
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2021 1

Model-Free Safety-Critical Control
for Robotic Systems

Tamas G. Molnar, Ryan K. Cosner, Andrew W. Singletary, Wyatt Ubellacker, and Aaron D. Ames

Abstract—This paper presents a framework for the safety-
critical control of robotic systems, when safety is defined on
safe regions in the configuration space. To maintain safety, we
synthesize a safe velocity based on control barrier function theory
without relying on a – potentially complicated – high-fidelity
dynamical model of the robot. Then, we track the safe velocity
with a tracking controller. This culminates in model-free safety
critical control. We prove theoretical safety guarantees for the
proposed method. Finally, we demonstrate that this approach is
application-agnostic. We execute an obstacle avoidance task with
a Segway in high-fidelity simulation, as well as with a Drone and
a Quadruped in hardware experiments.

Index Terms—Dynamics, Motion Control, Robot Safety

I. INTRODUCTION

SAFETY is a fundamental requirement in the control
of many robotic systems, including legged [1], flying

[2] and wheeled robots [3]. Provable safety guarantees and
safety-critical control for robotics have therefore attracted
significant attention. Synthesizing safety-critical controllers,
however, typically relies on high-fidelity dynamical models
describing the robots, which are often complicated and high-
dimensional. The underlying control laws, therefore, are non-
trivial to synthesize and implement [4], [5]. For example,
control barrier functions (CBFs) [6] are a popular tool to
achieve provable safety guarantees, although designing CBFs
and calculating the corresponding safe control inputs may be
nontrivial if the dynamics are complicated.

To tackle this, [7] proposed model-free barrier functions by
a data-driven approach, while [8], [9] used robust CBFs to
overcome the effects of unmodeled dynamics. Furthermore,
many works rely on reduced-order models for planning and
control [10]. These include single integrator models for multi-
robot applications [11], [12] or unicycle models for wheeled
robots [13], [14], which have proven to be extremely useful
models despite being overly simplistic. Here we draw inspi-
ration from these models and approaches.

In this paper, we rely on CBFs to synthesize safe controllers
for robotic systems in which safe regions are defined in the
configuration space. We treat the safety-critical aspect of this

Manuscript received: September 9, 2021; Revised: December 4, 2021;
Accepted: December 7, 2021.

This paper was recommended for publication by Editor Clement Gosselin
upon evaluation of the Associate Editor and Reviewers’ comments.

This research is supported in part by the National Science Foundation, CPS
Award #1932091, Dow (#227027AT) and Aerovironment.

The Authors are with the Control and Dynamical Systems and the Depart-
ment of Mechanical and Civil Engineering, California Institute of Technology,
Pasadena, CA 91125, USA. {tmolnar, rkcosner, asinglet,
wubellac, ames}@caltech.edu

Digital Object Identifier (DOI): see top of this page.

Fig. 1. The proposed control method and its execution on hardware. While
the safety-critical controller does not rely on the full dynamical model of the
robot, it controls the motion in a provably safe manner.

problem in a model-free fashion, without relying on the full-
order dynamics of the robot. We follow the approach of [15],
[16], where a safe velocity was designed based on reduced-
order kinematics – i.e., without the full dynamical model – and
this safe velocity was tracked by a velocity tracking controller.
This approach is agnostic to the application domain, although
the underlying tracking controllers depend on the system and
their synthesis or tuning may require knowledge about the
full model. Velocity tracking, however, is well-established in
robotics [17] and controllers executing stable tracking are
available for many robots. Once velocity tracking is estab-
lished, enforcing safety does not require further consideration
of the high-fidelity model — we refer to this as model-free
safety-critical control.

While the idea behind this control method was established
in [15], the present paper formalizes and generalizes this
approach via two main contributions. First, we provide a theo-
retical proof of the safe behavior for robotic systems executing
the proposed control approach. Second, we demonstrate the
applicability of this method on wheeled, flying and legged
robots: a Segway (in simulation), a Drone and a Quadruped
(in hardware experiments). This justifies that the method is
agnostic to the application domain.

The paper is organized as follows. Section II revisits control
Lyapunov and control barrier functions to achieve stability and
safety. Section III outlines the proposed control method, states
and proves the safety guarantees thereof. Section IV discusses
robotic applications through simulations and hardware exper-
iments. Section V concludes the paper.

II. PRELIMINARIES
Our approach relies on stable tracking of a safe velocity to

achieve safety for robotic systems. Thus, first we introduce



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2021

the notions of stability and safety, and the guarantees thereof
provided by control Lyapunov functions (CLFs) and control
barrier functions (CBFs). CLFs and CBFs are illustrated in
Fig. 2 together with a stable and a safe trajectory.

Consider control-affine systems with state space X ⊆ Rn,
state x ∈ X , set of admissible inputs U ⊆ Rm, and control
input u ∈ U :

ẋ = f(x) + g(x)u. (1)

Let f : X → Rn and g : X → Rn×m be Lipschitz continuous.
For an initial condition x(0) = x0 ∈ X and a Lipschitz contin-
uous controller k : X → U , u = k(x), the system has a unique
solution x(t) which we assume to exist for all t ≥ 0. We also
assume that x(t) ≡ 0 is an equilibrium of (1) if u(t) ≡ 0 (i.e.,
f(0) = 0) and X is an open and connected neighborhood of
x = 0.

Throughout the paper we use the following notation. ‖.‖ is
Euclidean norm and ‖.‖∞ is maximum norm. We say that a
continuous function γ : [0, b)→ R≥0, b ∈ R>0 is of class-K
(or γ : (−a, b)→ R, a, b ∈ R>0 is of extended class-K) if γ
is strictly monotonically increasing and γ(0) = 0.

A. Stability and Control Lyapunov Functions

Hereinafter, we rely on the notion of exponential stability.

Definition 1. The equilibrium x = 0 of system (1) is ex-
ponentially stable if there exist a,M, β ∈ R>0 such that
‖x0‖ ≤ a⇒ ‖x(t)‖ ≤Me−βt‖x0‖, ∀t ≥ 0.

An efficient technique to achieve exponential stability is
control synthesis via control Lyapunov functions (CLFs) [18],
as stated formally below.

Definition 2. A continuously differentiable function
V : X → R≥0 is a control Lyapunov function (CLF) for (1)
if there exists c, k1, k2, λ ∈ R>0 such that ∀x ∈ X:

k1‖x‖c ≤ V (x) ≤ k2‖x‖c

inf
u∈U

V̇ (x, u) ≤ −λV (x),
(2)

where
V̇ (x, u) = ∇V (x)(f(x) + g(x)u) (3)

is the derivative of V along system (1).

Theorem 1 ([18]). If V is a CLF for (1), then any locally
Lipschitz continuous controller u = k(x) satisfying

V̇ (x, k(x)) ≤ −λV (x), (4)

∀x ∈ X renders x = 0 exponentially stable.

Theorem 1 establishes that synthesizing a control input u
while enforcing condition (4) achieves exponential stability.

B. Safety and Control Barrier Functions

We consider system (1) safe if its state x(t) is contained in
a safe set S ⊂ X for all time, as stated below.

Definition 3. System (1) is safe w.r.t. S if S is forward
invariant under (1), that is, x0 ∈ S ⇒ x(t) ∈ S, ∀t ≥ 0.

Fig. 2. (a) A CLF and a stable trajectory. (b) A CBF and a safe trajectory.
While V is nonnegative, h may take any real value. (c) The stability
condition (4) and a stable trajectory (green), the ISS condition (10) and an
input-to-state stable trajectory (purple). For ISS the trajectory converges to
a neighborhood of x = 0. (d) The safety condition (8) and a safe trajectory
(green), the ISSf condition (12) and an input-to-state safe trajectory (purple).
For ISSf a superset Sd of S is forward invariant.

The choice of the safe set is application-driven, e.g., it
may represent positions where a robot does not collide with
obstacles. Here, we define the safe set S as the 0-superlevel
set of a continuously differentiable function h : X → R:

S = {x ∈ X : h(x) ≥ 0}. (5)

Then, control barrier functions (CBFs) can be used as tools
to synthesize provably safe controllers in a similar fashion to
how CLFs achieve stability.

Definition 4. A continuously differentiable function
h : X → R is a control barrier function (CBF) for (1) if
there exists α ∈ R>0 such that ∀x ∈ S: 1

sup
u∈U

ḣ(x, u) ≥ −αh(x), (6)

where
ḣ(x, u) = ∇h(x)(f(x) + g(x)u) (7)

is the derivative of h along system (1).

Theorem 2 ([6]). If h is a CBF for (1), then any locally
Lipschitz continuous controller u = k(x) satisfying

ḣ(x, k(x)) ≥ −αh(x), (8)

∀x ∈ S renders (1) safe w.r.t. S.

Theorem 2 establishes safety-critical controller synthesis by
condition (8). For example, a desired but not necessarily safe
controller kd(x) can be modified in a minimally invasive way
to a safe controller by solving the quadratic program:

k(x) = argmin
u∈U

(u− kd(x))>(u− kd(x))

s.t. ḣ(x, u) ≥ −αh(x).
(9)

The Lipschitz continuity of this controller is discussed in [6].

1In general, α can be chosen as an extended class-K function, while here
we use a constant for simplicity.



MOLNAR et al.: MODEL-FREE SAFETY-CRITICAL CONTROL FOR ROBOTIC SYSTEMS 3

C. Effect of Disturbances

In practice, robotic systems are often subject to unknown
disturbances that may compromise stability or safety. For
example, a bounded disturbance d ∈ Rm added to the input
u leads to the system ẋ = f(x) + g(x)(u+ d).

To address disturbances, the notion of exponential stabil-
ity can be extended to exponential input-to-state stability
(ISS) by modifying Definition 1. Namely, we require that
there exists a class-K function µ such that ‖x0‖ ≤ a ⇒
‖x(t)‖ ≤Me−βt‖x0‖+ µ(‖d‖∞), ∀t ≥ 0. That is, solutions
converge to a neighborhood of the origin which depends on
the size of the disturbance. [19], [20] showed that exponential
ISS is achieved by strengthening (4) in Theorem 1 to:

V̇ (x, u, d) ≤ −λV (x) + ι(‖d‖∞), (10)

for some class-K function ι.
Similarly, safety can be extended to input-to-state safety

(ISSf) by requiring that the system stays within a neighborhood
Sd ⊇ S of the safe set S which depends on the size of
the disturbance: x0 ∈ Sd ⇒ x(t) ∈ Sd, ∀t ≥ 0. We define this
neighborhood as a 0-superlevel set:

Sd = {x ∈ X : h(x) + γ(‖d‖∞) ≥ 0}, (11)

with some class-K function γ. It was established in [21] that
ISSf is guaranteed by replacing (8) in Theorem 2 with:

ḣ(x, u, d) ≥ −αh(x)− ι(‖d‖∞), (12)

for some class-K function ι.

III. MODEL-FREE SAFETY-CRITICAL CONTROL

Now consider robotic systems with configuration space
Q ⊆ Rn, configuration coordinates q ∈ Q, set of admissible
inputs U ⊆ Rm, control input u ∈ U , and dynamics:

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu, (13)

where D(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈ Rn×n
contains centrifugal and Coriolis forces, G(q) ∈ Rn involves
gravity terms and B ∈ Rn×m is the input matrix. D(q)
is symmetric, positive definite, Ḋ(q, q̇)− 2C(q, q̇) is skew-
symmetric. We consider control laws k : Q× Rn → Rm,
u = k(q, q̇), initial conditions q(0) = q0, q̇(0) = q̇0, and as-
sume that a unique solution q(t) exists for all t ≥ 0.

We consider the robotic system safe if its configuration q
lies within a safe set S for all time: q(t) ∈ S, t ≥ 0.

Assumption 1. The safe set is defined as the 0-superlevel set
of a continuously differentiable function h : Q→ R:

S = {q ∈ Q : h(q) ≥ 0}, (14)

where the gradient of h is finite: ∃Ch ∈ R>0 such that
‖∇h(q)‖ ≤ Ch, ∀q ∈ S. That is, safety depends on the con-
figuration q only and h is independent of q̇.

Problem Statement. For the robotic system (13), design a
controller u = k(q, q̇) that achieves safety with respect to set
S in (14), i.e., q(t) ∈ S, ∀t ≥ 0 given certain initial conditions
q0 ∈ Q and q̇0 ∈ Rn.

A. Control Method

Following [15], [16], we seek to maintain safety by synthe-
sizing and tracking a safe velocity. This reduces the complexity
of safety-critical control significantly, while velocity tracking
controllers are widely used [17]. The approach allows safety-
critical control in a model-free fashion.

We synthesize the safe velocity q̇s ∈ Rn so that it satisfies:

∇h(q)q̇s ≥ −αh(q), (15)

cf. (8), for some α ∈ R>0 to be selected. The safe velocity q̇s
depends on the configuration q. Note that (15) is a kinematic
condition that does not depend on the full dynamics (13).

To track the safe velocity, we define the tracking error:

ė = q̇ − q̇s. (16)

and use a velocity tracking controller u = k(q, q̇). First, we
consider the scenario that u is able to drive the error ė to zero
exponentially, then we address the effect of disturbances.

Assumption 2. The velocity tracking controller u = k(q, q̇)
achieves exponentially stable tracking: ‖ė(t)‖ ≤M‖ė0‖e−λt
for some M,λ ∈ R>0. That is, if ė is differentiable (ë, q̈s
exist), there exists a continuously differentiable Lyapunov
function V : Q× Rn → R≥0 such that ∀(q, ė) ∈ Q× Rn:

k1‖ė‖ ≤ V (q, ė) ≤ k2‖ė‖, (17)

for some k1, k2 ∈ R>0, and there exists λ ∈ R>0 such that
∀(q, ė, q̇, q̈s) ∈ Q× Rn × Rn × Rn u satisfies:

V̇ (q, ė, q̇, q̈s, u) ≤ −λV (q, ė), (18)

cf. (4). For exposition’s sake, below we assume q̈s exists and
we use (18). This assumption is relaxed later in Remark 4.

Before discussing its safety guarantees, we demonstrate the
applicability of this method on a motivating example.

Example 1 (Double integrator system). Here we revisit the
example in [15]. As the simplest instantiation of (13), consider
a double integrator system in two dimensions:

q̈ = u, (19)

where q ∈ R2 is the planar position of the robot and u ∈ R2.
Our goal is to navigate the system from a start position q0
to a goal qg while avoiding obstacles. A simple solution is to
realize the desired velocity q̇d = −KP(q − qg) that is based
on a proportional controller with gain KP ∈ R>0.

We can avoid an obstacle of radius r centered at qo by the
help of the distance d = ‖q − qo‖ and the CBF:

h(q) = d− r, (20)

with gradient ∇h(q) = (q − qo)>/‖q − qo‖ = n>o equal to
the unit vector no pointing from the obstacle to the robot.
Then, the safe velocity can be found by using condition (15).
Specifically, we modify the desired velocity q̇d in a minimally
invasive fashion by solving the quadratic program:

argmin
q̇s∈R2

(q̇s − q̇d)>(q̇s − q̇d)

s.t. n>o q̇s ≥ −α(d− r),
(21)



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2021

Fig. 3. Numerical simulation of the double integrator system (19) tracking the
safe velocity (22). The controller is able to keep the system safe if parameter
α is selected to be small enough.

cf. (9). Based on the KKT conditions [22], it has the solution:

q̇s = q̇d + max{−n>o q̇d − α(d− r), 0}no. (22)

The safe velocity can be tracked for example by the controller
u = −KD(q̇ − q̇s) with gain KD ∈ R>0.

Fig. 3 shows four simulation results for avoiding two
obstacles with parameters KP = 0.2 s−1, KD = 1 s−1 and
α = 0.1, 0.2, 0.5 and 1 s−1, respectively. With the proposed
approach, the double integrator system avoids the obstacles,
although the second-order dynamics was not directly taken
into account during the CBF and control design. The condition
for safety, however, is picking a small enough α value (e.g. 0.1
or 0.2), while safety is violated for larger α (e.g. 0.5 or 1). We
remark that for multiple obstacles we considered the closest
one at each time. This results in a nonsmooth CBF which has
been analyzed in [23]. Accordingly, the safe velocity q̇s is only
piecewise differentiable; for simplicity, our constructions are
restricted to the differentiable segments.

B. Main Result

In what follows, our main result proves that tracking the
safe velocity achieves safety for the full dynamics if parameter
α is selected to be small enough. Specifically, for tracking
controllers satisfying Assumption 2 stability translates into
safety for the full system (13) if λ > α. As this result is ag-
nostic to the application domain, this culminates in model-free
safety-critical control. Realizing velocity tracking controllers,
however, depends on the application. Later we give examples
for such controllers and corresponding CLFs.

The following theorem summarizes the safety guarantees
provided by tracking the safe velocity.

Theorem 3. Consider system (13), safe set (14), safe
velocity satisfying (15), and velocity tracking controller

satisfying (18). If λ > α, safety is achieved such that
(q0, ė0) ∈ SV ⇒ q(t) ∈ S, ∀t ≥ 0, where:

SV = {(q, ė) ∈ Q× Rn : hV (q, ė) ≥ 0},
hV (q, ė) = −V (q, ė) + αeh(q),

(23)

with αe = (λ− α)k1/Ch > 0 and Ch, k1 defined at (14, 17).

Proof. Since V (q, ė) ≥ 0, the implication hV (q, ė) ≥ 0 ⇒
h(q) ≥ 0 holds. Thus, hV (q(t), ė(t)) ≥ 0, ∀t ≥ 0 is sufficient
to prove. We prove this by noticing that the initial conditions
satisfy hV (q0, ė0) ≥ 0 and we also have:

ḣV (q, ė, q̇, q̈s, u) = −V̇ (q, ė, q̇, q̈s, u) + αe∇h(q)q̇

≥ λV (q, ė) + αe∇h(q)q̇s + αe∇h(q)ė

≥ λV (q, ė)− αeαh(q) + αe∇h(q)ė

≥ (λ− α)V (q, ė)− αe‖∇h(q)‖‖ė‖ − αhV (q, ė)

≥ (λ− α)k1‖ė‖ − αeCh‖ė‖ − αhV (q, ė)

≥ −αhV (q, ė).

(24)

Here we used the following properties in the 6 lines of the
inequality: (i) definition (23) of hV , (ii) stability condition (18)
and definition (16) of ė, (iii) condition (15) on the safe velocity,
(iv) definition (23) of hV and the Cauchy-Schwartz inequality,
(v) lower bound of V in (17) and upper bound Ch of ‖∇h(q)‖,
(vi) definition of αe. This guarantees hV (q(t), ė(t)) ≥ 0,
∀t ≥ 0 by Theorem 2.

Remark 1. Condition λ > α means the controller tracks the
safe velocity fast enough (characterized by λ) compared to
how fast the boundary of the safe set may be approached
(characterized by α). In practice, one can pick a small enough
α for a given velocity tracking controller, for example, by
gradually increasing α from 0. The existence of such α is
guaranteed by the Theorem. Note that there is a trade-off: for
smaller α the system may become more conservative, evolving
farther from the boundary of the safe set.

Remark 2. Condition (15) is equivalent to designing a safe
control input q̇s for the single integrator system q̇ = q̇s. Thus,
this approach is a manifestation of control based on reduced-
order models. While h is a CBF for the reduced-order model,
hV is a CBF for the full system (13) as a dynamic extension
of h, similar to the energy-based extension in [16]. Other
reduced-order models of the form q̇ = A(q)µs with control
input µs ∈ Rk and transformation A(q) ∈ Rn×k can also be
used. This, for example, includes the unicycle model for
wheeled robots with q = (x, y, ψ) ∈ R3 containing Cartesian
positions and yaw angle and µs = (vs, ωs) ∈ R2 containing
forward velocity and yaw rate:ẋẏ

ψ̇

 =

cosψ 0
sinψ 0

0 1

[vs
ωs

]
. (25)

The safe velocity µs is given by ∇h(q)A(q)µs ≥ −αh(q)
based on (15), and the proof of Theorem 3 holds with
substitution q̇s = A(q)µs. The tracking controller u, however,
must provide property (18) with respect to ė = q̇ −A(q)µs.

Remark 3. Theorem 3 requires initial conditions to satisfy
(q0, ė0) ∈ SV ⇐⇒ h(q0) ≥ V (q0, ė0)/αe. This is a stricter



MOLNAR et al.: MODEL-FREE SAFETY-CRITICAL CONTROL FOR ROBOTIC SYSTEMS 5

condition than q0 ∈ S ⇐⇒ h(q0) ≥ 0 that is usually required
in safety-critical control (cf. Definition 3). The additional
conservatism is reduced when the initial tracking error ė0 is
smaller (since V (q0, ė0) is smaller) and when the tracking is
faster, i.e., λ− α is larger (since αe is larger).

Remark 4. The error ė is assumed to be differen-
tiable in Assumption 2 only for exposition’s sake. Theo-
rem 3 can be extended to non-differentiable signals sat-
isfying ‖ė(t)‖ ≤M‖ė0‖e−λt. The proof relies on the fact
that ḣ(q, q̇) ≥ −αh(q)− ChM‖ė0‖e−λt holds, and by the
comparison lemma with ẏ(t) = −αy(t)− ChM‖ė0‖e−λt,
y(0) = h(q0) one can show that h(q(t)) ≥ y(t) ≥ 0.

C. Effect of Disturbances

Now consider that ideal exponential tracking of the safe
velocity is not possible. This can be captured via a bounded
input disturbance d, that represents the effect of imperfect
tracking controllers, time delays or modeling errors. Then,
instead of safety, one shall guarantee input-to-state safety
(ISSf), i.e., the invariance of the larger set Sd ⊇ S:

Sd = {q ∈ Q : hd(q) ≥ 0},
hd(q) = h(q) + γ(‖d‖∞),

(26)

where γ is a class-K function to be specified. We also
introduce the dynamic extension SV d ⊇ SV of set Sd:

SV d = {(q, ė) ∈ Q× Rn : hV d(q, ė) ≥ 0},
hV d(q, ė) = hV (q, ė) + γ(‖d‖∞).

(27)

We show that ISSf is guaranteed by input-to-state stable
(ISS) tracking: ‖ė(t)‖ ≤M‖ė0‖e−λt + µ(‖d‖∞). Note that
exponential ISS is our strongest assumption. When the track-
ing is poor, µ(‖d‖∞) dominates this bound. If the error does
not decay (M = 0), the bound reduces to ‖ė(t)‖ ≤ ‖ė‖∞ and
we recover the traditional ISSf guarantees in [21]. For ISS,
instead of (18) the tracking controller shall satisfy:

V̇ (q, ė, q̇, q̈s, u, d) ≤ −λV (q, ė) + ι(‖d‖∞), (28)

for some class-K function ι. The connection between ISS and
ISSf is summarized in the following Corollary of Theorem 3.

Corollary 1. Consider system (13), sets Sd and SV d in (26)
and (27), safe velocity satisfying (15), and velocity tracking
controller satisfying (28). If λ > α, input-to-state safety is
achieved such that (q0, ė0) ∈ SV d ⇒ q(t) ∈ Sd, ∀t ≥ 0, where
αe is given in Theorem 3 and γ(‖d‖∞) = ι(‖d‖∞)/α.

The proof follows the same steps as those in the proof
of Theorem 3, by replacing h and hV with hd and hV d.
Corollary 1 concludes that input-to-state stable tracking of a
safe velocity implies input-to-state safety for the full system,
i.e., robust velocity tracking implies robust safety guarantees.

D. Velocity Tracking Controllers

Finally, we consider examples of velocity tracking con-
trollers that provide stability by (18) or ISS by (28). As the
simplest choice, we consider a model-free D controller:

u = −KDė, (29)

where KD ∈ Rm×n is selected so that K = BKD is positive
definite. Furthermore, when model-dependent terms are well-
known, they can also be included in the control law. If n = m
and B is invertible (i.e., the system is fully actuated), one may
use a D controller with gravity compensation:

u = B−1(G(q)−Kė), (30)

with a positive definite gain K ∈ Rn×n. Moreover, one can
also use a heavily model-dependent extension:

u = B−1(D(q)q̈s + C(q, q̇)q̇s +G(q)−Kė). (31)

While this controller may achieve better tracking, it requires
D(q) and C(q, q̇) which may have complicated expressions
and may be expensive to compute in practice.

We characterize these controllers by the constant λ ∈ R>0:

λ =
σmin(K)

sup
q∈Q

σmax(D(q))
, (32)

where σmin and σmax denote the smallest and largest eigen-
value. The eigenvalues are positive real numbers due to the
positive definiteness of D(q) and K. Accordingly, λ repre-
sents the smallest gain divided by the largest inertia, hence
characterizes how fast controllers may track. We associate the
controllers with the Lyapunov function candidate:

V (q, ė) =

√
1

2
ė>D(q)ė, (33)

that has the bound (17) with k1 = infq∈Q
√
σmin(D(q))/2

and k2 = supq∈Q
√
σmax(D(q))/2. We also define the linear

class-K function ι(‖d‖∞) = ‖d‖∞/(2k1).
With the above controllers, the parameters to be selected

during control design are α and KD or K. Now we state that
these controllers satisfy the required stability properties.

Proposition 1. Consider system (13), Lyapunov function V
defined by (33), constant λ given by (32) and ė 6= 0.
(i) Controller (29) satisfies the ISS condition (28) with

respect to d = −D(q)q̈s − C(q, q̇)q̇s −G(q).
(ii) Controller (30) satisfies the ISS condition (28) with

respect to d = −D(q)q̈s − C(q, q̇)q̇s when q̇s 6≡ 0 and the
stability condition (18) when q̇s ≡ 0.

(iii) Controller (31) satisfies the stability condition (18).

Proof. The proof follows that in Section 8.2 of [17]. Here we
prove case (i) only. The proof of case (ii) is the same when
q̇s 6≡ 0, whereas the proofs of case (ii) when q̇s ≡ 0 and case
(iii) can be obtained by substituting d ≡ 0.

We differentiate V given by (33):

V̇ (q, ė, q̇, q̈s, u, d) =
1

2V (q, ė)

(
1

2
ė>Ḋ(q, q̇)ė+ ė>D(q)ë

)
,

(34)
and substitute the error dynamics corresponding to (13, 16):

D(q)ë = −C(q, q̇)ė−D(q)q̈s−C(q, q̇)q̇s−G(q)+Bu. (35)

For controller (29) this leads to:

V̇ (q, ė, q̇, q̈s, u, d) =
−ė>Kė+ ė>d

2V (q, ė)
, (36)



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2021

Fig. 4. High-fidelity simulation of a Ninebot E+ Segway platform. (a) Planar dynamical model (13, 39) with the model-free safety-critical controller (41, 42).
(b) Spatial dynamical model with the model-free controller (44, 45). The controllers keeps the system safe (the CBF h is positive for all time).

where the term ė>(Ḋ(q, q̇)− 2C(q, q̇))ė dropped since
Ḋ(q, q̇)− 2C(q, q̇) is skew-symmetric.

Based on (36), now we show (28) holds. Since (32) implies
ė>Kė− λė>D(q)ė ≥ 0, the definition (33) of V leads to:

−ė>Kė
2V (q, ė)

≤ −λV (q, ė), (37)

∀q ∈ Q, ė ∈ Rn. Furthermore, the Cauchy-Schwartz inequal-
ity, the bound (17) on V and the definition of ι yield:

ė>d

2V (q, ė)
≤ ‖ė‖‖d‖∞

2k1‖ė‖
= ι(‖d‖∞), (38)

where ‖ė‖ drops, making the right-hand side independent of
time. Substituting (37, 38) into (36) yields (28).

IV. APPLICATIONS TO WHEELED, FLYING AND
LEGGED ROBOTS

Now we apply the proposed control method to robotic
platforms, including high-fidelity simulations of a Segway and
hardware experiments on a Drone and a Quadruped.

A. Numerical Simulation of Segway

We consider a Ninebot E+ Segway platform with its planar
and spatial high-fidelity dynamical models described in [25].

Example 2 (Segway in plane). Consider the two-degrees of
freedom planar Segway model in Fig. 4(a) with configuration
q = [p, ϕ]> ∈ Q = R× [0, 2π] including the position p and
pitch angle ϕ. The dynamics are in form (13), where:

D(q)=

[
m0 mL cosϕ

mL cosϕ J0

]
, G(q)=

[
0

−mgL sinϕ

]
,

C(q, q̇)=

[
bt/R −bt −mLϕ̇ sinϕ
−bt btR

]
, B=

[
Km/R
−Km

]
,

(39)

with parameters given in Table I and u ∈ U = [−20, 20] V.

TABLE I
PARAMETERS OF THE SEGWAY MODEL

Description Parameter Value Unit
gravitational acceleration g 9.81 m/s2

radius of wheels R 0.195 m
mass of wheels M 2×2.485 kg

mass moment of inertia of wheels JC 2×0.0559 kgm2

distance of wheel center to frame CoM L 0.169 m
mass of frame m 44.798 kg

mass moment of inertia of frame JG 3.836 kgm2

lumped mass m0 = m+M + JC/R
2 m0 52.710 kg

lumped inertia J0 = mL2 + JG J0 5.108 kgm2

torque constant of motors Km 2×1.262 Nm/V
damping constant of motors bt 2×1.225 Ns

Our goal is to realize a desired forward velocity ṗd until
reaching a wall at position pmax, then stop automatically and
safely in front of the wall. This is captured by the CBF:

h(q) = pmax − p, (40)

which, by condition (15), leads to the safe forward velocity:

ṗs = min{ṗd, α(pmax − p)}, (41)

similar to (22). This safe velocity is tracked by the controller:

u = Kṗ(ṗ− ṗs) +Kϕϕ+Kϕ̇ϕ̇ (42)

with Kṗ = 50 Vs/m, Kϕ = 150 V/rad, Kϕ̇ = 40 Vs/rad,
which also stabilizes the Segway to the upright position.

Fig. 4(a) shows simulation results where the Segway
executes the task starting from p0 = 0, ϕ0 = −0.138 rad
(where its frame is vertical), ṗ0 = 0, ϕ̇0 = 0, for ṗd = 1 m/s,
pmax = 2 m and α = 0.5 s−1. Notice that controller (41, 42)
is model-free, it does not rely on the full dynamics (13, 39).
The gains Kṗ, Kϕ and Kϕ̇, however, are tuned so that the
full dynamics achieves stable velocity tracking. These gains
were tuned based on linearization and LQR in [25] and they
determine the tracking performance with the associated λ.

Example 3 (Segway in space). Consider the spatial model of
the Segway in Fig. 4(b) with 7-dimensional state space and



MOLNAR et al.: MODEL-FREE SAFETY-CRITICAL CONTROL FOR ROBOTIC SYSTEMS 7

Fig. 5. Hardware experiments using the proposed model-free safety-critical control method. An obstacle avoidance task is accomplished by two fundamentally
different robots: a custom-made racing Drone (top) and a Unitree A1 Quadruped (bottom). (a) The Drone is tracking a safe velocity determined based on
single integrator model. (b) The Quadruped is tracking a safe velocity based on single integrator model via side-stepping and (c) based on unicycle model
via turning. Both robots executed the task with guaranteed safety. A video of the experiments can be found at [24].

2 control inputs. The task is to navigate it from a start point
to a goal (left panel) while avoiding obstacles of radius 0.5
m (solid black), similar to Example 1. The obstacle radius is
buffered by the size of the Segway (dashed black) and the
Segway’s center must be kept outside this zone.

This task is accomplished by tracking a safe velocity
obtained for the unicycle model (25); cf. Remark 2. We
set the desired forward velocity and yaw rate µd = (vd, ωd)
based on the distance dg = ‖(xg − x, yg − y)‖ to the goal as
vd = Kvdg and ωd = −Kω(sinψ − (yg − y)/dg). To avoid
obstacles, we use a CBF that includes the heading direction:

h(q) = d− r − δ cos(ψ − θ), (43)

where d = ‖(xo − x, yo − y)‖ is the distance from the obsta-
cle, θ = arctan((yo − y)/(xo − x)) is the angle towards the
obstacle, and δ ∈ R>0 is a tunable parameter.

This CBF is incorporated into the quadratic program:

argmin
µs∈R2

(µs − µd)>Γ(µs − µd)

s.t. ∇h(q)A(q)µs ≥ −αh(q),
(44)

cf. (21), where Γ = diag{1, R2} is a weight between forward
velocity and yaw rate with parameter R ∈ R>0. The resulting
safe velocity µs = (vs, ωs) is tracked by the controller:

u1,2 = Kṗ(ṗ− vs) +Kϕϕ+Kϕ̇ϕ̇±Kψ̇(ψ̇ − ωs) (45)

used at the two wheels with the same gains as in Example 2
and a gain Kψ̇ = 10 Vs/rad on the yaw rate ψ̇.

With this approach, the Segway is able to move to the goal
safely, while its controller (44, 45) is model-free. Fig. 4(b)
shows the safe motion for Kv = 0.16 s−1, Kω = 0.8 s−1,
α = 0.2 s−1, δ = 0.5 m and R = 0.25 m.

B. Hardware Experiments on Drone and Quadruped

We executed the obstacle avoidance task of Example 3 on
two fundamentally different hardware platforms: a Drone and
a Quadruped; see Fig. 5. The obstacle locations were known
to the robots, sensory information was used to determine the
robots’ position only. We performed two classes of exper-
iments: by synthesizing safe velocities based on the single
integrator and unicycle models, respectively; cf. Remark 2. A
video of the experiments can be found at [24].

First, we considered the single integrator model, and we
tracked the associated safe velocity with the Drone and the
Quadruped by platform-specific tracking controllers. We used
CBF (20) and safe velocity (22). The desired velocity was
q̇d = −KP(q − qg) with saturation; cf. Example 1.

The Drone was a custom-built racing drone [26], shown in
Fig. 5(a). It has 6 degrees of freedom and 4 actuators. The state
of the Drone (position, orientation and corresponding veloci-
ties) were measured by IMU and an OptiTrack motion capture
system. State estimation and control action computation ran
at 400 Hz. The safe velocity was commanded to the drone
wireless from a desktop computer, while velocity tracking was
done using an on-board betaflight flight controller. The safe
velocity was calculated with KP = 0.7 s−1 and α = 0.2 s−1.
Fig. 5(a) shows the Drone reaching the goal safely, as guar-
anteed by Theorem 3 since α was selected small enough for
the available tracking performance. The value of α was chosen
based on the simulated response of the single integrator. α was
not tuned for optimal performance, and it could potentially be
increased for less conservatism.

The Quadruped was a Unitree A1 quadrupedal robot, shown
in Fig. 5(b), which has 18 degrees of freedom and 12 actuators.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2021

Its position was measured based on odometry assuming the
feet do not slip, while joint states were available via built-
in encoders. An ID-QP walking controller was realized at 1
kHz loop rate on this robot to track a stable walking gait
with prescribed forward and lateral velocities and yaw rate,
designed using the concepts in [27]. Individual commands
were tracked via a motion primitive framework described
in [28]. In the single integrator experiments, the yaw rate was
set to zero, while the safe velocity (22) with KP = 0.1 s−1 and
α = 0.2 s−1 was tracked by forward- and side-stepping. The
Quadruped executed the task safely similar to the Drone (see
Fig. 5(b)), although it has fundamentally different dynamic
behavior. This indicates the application-agnostic nature of our
model-free approach.

Finally, we used the unicycle model (25) and CBF (43) to
achieve safety on the Quadruped. The safe forward velocity
and yaw rate in (44) were tracked by the same ID-QP walking
controller. Fig. 5(c) shows the Quadruped traversing the obsta-
cle course with Kv = 0.08 s−1, Kω = 0.4 s−1, α = 0.2 s−1,
δ = 0.5 m and R = 0.5 m. While safety is maintained, the
Quadruped performs the task with different behavior than in
the previous experiment: it walks forward and turns instead of
forward- and side-stepping. Still, safety is provably guaranteed
— and in a model-free fashion.

V. CONCLUSIONS

We considered safety-critical control for robotic systems in
a model-free fashion following [15]. Our control method relies
on a synthesizing a safe velocity using control barrier functions
and tracking this velocity. We stated and proved theoretical
guarantees for the safety of our method. Namely, safety is
achieved when the safe velocity is tracked faster than how
fast the corresponding safe motion may approach the boundary
of the safe set. Due to its model-free nature, our approach is
application-agnostic. By simulation and hardware experiments
we demonstrated that it works for various robots such as a
Segway, a Drone and a Quadruped.

While our method does not rely on the full dynamical model
of the robot to achieve safety, it relies on kinematic models
such as the single integrator or unicycle models. Our future
work includes further exploration of safety-critical control
based on reduced-order models beyond simple kinematic ones.
We also plan to study how to relax the assumption on the
performance of the velocity tracking controller.

REFERENCES

[1] S. Teng, Y. Gong, J. W. Grizzle, and M. Ghaffari, “Toward safety-
aware informative motion planning for legged robots,” arXiv preprint,
no. arXiv:2103.14252, 2021.

[2] J. Tordesillas, B. T. Lopez, and J. P. How, “Faster: Fast and safe
trajectory planner for flights in unknown environments,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2019, pp.
1934–1940.

[3] S. Kousik, S. Vaskov, F. Bu, M. Johnson-Roberson, and R. Vasudevan,
“Bridging the gap between safety and real-time performance in receding-
horizon trajectory design for mobile robots,” The International Journal
of Robotics Research, vol. 39, no. 12, pp. 1419–1469, 2020.

[4] J. Nubert, J. Köhler, V. Berenz, F. Allgöwer, and S. Trimpe, “Safe and
fast tracking on a robot manipulator: Robust MPC and neural network
control,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3050–
3057, 2020.

[5] L. Zheng, R. Yang, J. Pan, and H. Cheng, “Safe learning-based tracking
control for quadrotors under wind disturbances,” in 2021 American
Control Conference (ACC), 2021, pp. 3638–3643.

[6] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2017.

[7] E. Squires, R. Konda, S. Coogan, and M. Egerstedt, “Model free
barrier functions via implicit evading maneuvers,” arXiv preprint, no.
arXiv:2107.12871, 2021.

[8] M. Jankovic, “Robust control barrier functions for constrained stabiliza-
tion of nonlinear systems,” Automatica, vol. 96, pp. 359–367, 2018.

[9] P. Seiler, M. Jankovic, and E. Hellstrom, “Control barrier functions
with unmodeled dynamics using integral quadratic constraints,” arXiv
preprint, no. arXiv:2108.10491, 2021.

[10] S. Singh, M. Chen, S. L. Herbert, C. J. Tomlin, and M. Pavone, “Robust
tracking with model mismatch for fast and safe planning: An SOS
optimization approach,” in International Workshop on the Algorithmic
Foundations of Robotics, M. Morales, L. Tapia, G. Sánchez-Ante, and
S. Hutchinson, Eds., 2020, pp. 545–564.

[11] L. Sabattini, C. Secchi, N. Chopra, and A. Gasparri, “Distributed control
of multirobot systems with global connectivity maintenance,” IEEE
Transactions on Robotics, vol. 29, no. 5, pp. 1326–1332, 2013.

[12] S. Zhao and Z. Sun, “Defend the practicality of single-integrator models
in multi-robot coordination control,” in IEEE International Conference
on Control Automation, 2017, pp. 666–671.

[13] A. De Luca, G. Oriolo, and M. Vendittelli, “Control of wheeled mobile
robots: An experimental overview,” in Lecture Notes in Control and
Information Sciences, S. Nicosia, S. B., A. Bicchi, and P. Valigi, Eds.
Berlin: Springer, 2001, vol. 270, pp. 181–226.

[14] D. Koung, I. Fantoni, O. Kermorgant, and L. Belouaer, “Consensus-
based formation control and obstacle avoidance for nonholonomic multi-
robot system,” in International Conference on Control, Automation,
Robotics and Vision, 2020, pp. 92–97.

[15] A. Singletary, K. Klingebiel, J. R. Bourne, N. A. Browning, P. Tokumaru,
and A. Ames, “Comparative analysis of control barrier functions and ar-
tificial potential fields for obstacle avoidance,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2021.

[16] A. Singletary, S. Kolathaya, and A. D. Ames, “Safety-critical kinematic
control of robotic systems,” IEEE Control Systems Letters, vol. 6, pp.
139–144, 2022.

[17] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and
Control. New York: John Wiley and Sons, 2005.

[18] H. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River: Prentice
Hall, 2002.

[19] E. D. Sontag and Y. Wang, “On characterizations of input-to-state
stability with respect to compact sets,” in Nonlinear Control Systems
Design. Elsevier, 1995, pp. 203–208.

[20] E. D. Sontag, “Input to state stability: Basic concepts and results,” in
Nonlinear and Optimal Control Theory. Springer, 2008, pp. 163–220.

[21] S. Kolathaya and A. D. Ames, “Input-to-state safety with control barrier
functions,” IEEE Control Systems Letters, vol. 3, no. 1, pp. 108–113,
2019.

[22] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
University Press, 2004.

[23] P. Glotfelter, J. Cortes, and M. Egerstedt, “A nonsmooth approach to
controller synthesis for Boolean specifications,” IEEE Transactions on
Automatic Control, pp. 1–1, 2020.

[24] Supplementary video: https://youtu.be/vNcc5vgswx0.
[25] T. Gurriet, M. Mote, A. Singletary, P. Nilsson, E. Feron, and A. D. Ames,

“A scalable safety critical control framework for nonlinear systems,”
IEEE Access, vol. 8, pp. 187 249–187 275, 2020.

[26] A. Singletary, A. Swann, Y. Chen, and A. D. Ames, “Onboard safety
guarantees for racing drones: High-speed geofencing with control barrier
functions,” IEEE Robotics and Automation Letters, 2021, submitted.

[27] J. Buchli, M. Kalakrishnan, M. Mistry, P. Pastor, and S. Schaal,
“Compliant quadruped locomotion over rough terrain,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2009, pp.
814–820.

[28] W. Ubellacker, N. Csomay-Shanklin, T. G. Molnar, and A. D. Ames,
“Verifying safe transitions between dynamic motion primitives on legged
robots,” arXiv preprint, no. arXiv:2106.10310, 2021.


